Gold and Iron Loaded Micelles: A Multifunctional Approach for Combined Imaging and Therapy, With Improved Pharmacokinetics

نویسندگان

  • Ajlan Al Zaki
  • Andrew Tsourkas
چکیده

Radiation therapy is an important component in the treatment and management of cancer patients. Despite current advances in imaging technologies and treatment planning strategies, a major limitation persists in accurately delineating tumor from normal tissue resulting in radiation–induced damage to healthy structures. Therefore, the frequency and dose of radiation exposure is limited by the generated toxicity in healthy tissues. The use of nanoparticles for contrast–enhanced imaging could improve the accuracy of therapeutic delivery and guide radiation treatments to maximize delivery to disease target tissues while sparing adjacent normal structures. Further, advancements in radiation therapy focus on the use of radiosensitizers that are intended to enhance tumor cell killing while minimizing effects on normal tissue. We have developed multifunctional nanoplatforms, containing sub–nanometer gold and iron nanoparticles that can provide contrast enhancement using computed tomography and magnetic resonance imaging, while also serving as radiosensitizers for X–ray therapy. The effectiveness of these nanoparticles was evaluated in vivo demonstrating an improvement in both tumor margin visualization for image-guided radiation therapy and overall survival in tumor bearing mice. Importantly, we found that measurements of contrast enhancement in imaging correlated strongly with tumor response after radiation therapy. Furthermore, we have found that by encapsulating sub–nanometer gold particles within micelles we are able achieve improved excretion profiles compared to larger gold particles, with gold detected in both urine and feces suggesting that particles within this size range are more efficiently removed by the kidneys and liver. Finally, the use of an actively targeted nanoplatform can achieve higher tumor retention, facilitate nanoparticle internalization, and improve tumor specificity. To facilitate the introduction of targeting molecules onto micelle formulations, a naturally occurring surfactant protein oleosin was used to stabilize superparamagnetic iron oxide clusters. Functionalization with targeting ligands (e.g. Her2/neu affibody) was achieved by fusing the biologically relevant motifs to oleosin using standard cloning techniques, and cell specific targeting was confirmed using magnetic relaxation techniques. In the future, we envision that strategies like this will minimize the off–target effects of radiation, reduce tumor burden, provide information on the likelihood of tumor regression in response to therapy and reduce long–term nanoparticle retention. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Bioengineering First Advisor Andrew Tsourkas This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1188

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

Study of multifunctional PLGA-SPION nanoparticles loaded with Gemcitabine as radiosensitizer

Abstract This study aimed to modify the biological response of cells to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared and used with gemcitabine (Gem). These two agents were encapsulated simultaneously into poly (D, L-lactic-co-glycolic acid) (PLGA) to form multifunc...

متن کامل

Co -delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for delivery to breast cancer cell line

Co-delivery approach has been recommended to reduce the amount of each drug and to achieve the synergistic effect for cancer treatment. CUR and SF have antitumor effects, but their application is limited because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an innovative co-delivery of SF and CUR with magne...

متن کامل

Co -delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for delivery to breast cancer cell line

Co-delivery approach has been recommended to reduce the amount of each drug and to achieve the synergistic effect for cancer treatment. CUR and SF have antitumor effects, but their application is limited because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an innovative co-delivery of SF and CUR with magne...

متن کامل

Imaging the delivery of drug-loaded, iron-stabilized micelles.

Nanoparticle drug carriers hold potential to improve current cancer therapy by delivering payload to the tumor environment and decreasing toxic side effects. Challenges in nanotechnology drug delivery include plasma instability, site-specific delivery, and relevant biomarkers. We have developed a triblock polymer comprising a hydroxamic acid functionalized center block that chelates iron to for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017